Simulation

Robin Burke
GAM 224
Simulation

- Games simulate real-world activities
 - sports games
 - racing games
 - historical games

- Central idea
 - mapping between the game and the real-world activity
Simulation II

- Games also simulate fantasy and fictional activities
 - any RPG
 - most FPS

- Central idea
 - mapping between the game and...
Imaginary realism

- Games (like other fictional creations)
 - require "willing suspension of disbelief"
 - we agree to be lied to
 - (why is that?)

- We expect of a realistic game
 - that it be internally consistent
 - we expect "physical" laws to be the same everywhere
 - that its deviations from our consensus reality to be explained
 - we can learn what "physics" is in this world
Mapping

- Simulation is a mapping between
 - a representation in the game
 - an aspect of reality or some imagined reality
- The mapping will be incomplete
 - the game may leave out inconvenient or boring parts
 - the game may include improbable situations for gameplay reasons
- Example
 - realistic healing from wounds is slow
 - an announcement is heard on the radio just when you come in the room
 - you can't take over enemy buildings, you have to destroy them
The mapping will be inexact
- the game may exaggerate the physics for effect or gameplay
- the game may (will) abstract from physical reality for practical reasons

Example
- basketball players jump incredibly high
- crates can be destroyed but not doors or walls
Basic fact

- All physics is simplification
 - complex multi-body physical simulations are too slow
 - reality is chaotic
 - limits to what can be rendered graphically
Example: Halo

- What happens when a grenade explodes?
 - do we simulate the ignition and rapid oxidation of explosives, pressure waves, metal shear and shrapnel trajectories?
 - do we simulate concussion injuries, soft tissue damage, and bone trauma?
- No
 - we assign a certain amount of damage to characters based on their distance from the explosions center
Game physics

- Physics = the evolution of the game state
 - we want the player to feel as though there is a real world in the game
 - the game state must be complex
 - its evolution must seem natural
 - the player's control over it should seem natural
Natural?

- Games are profoundly unnatural
 - Aliens? Psychic powers? Controlling a civilization over centuries?
- Imaginary realism
 - whatever is natural in the game world context
- Game physics
 - may have nothing to do with Newton's physics
 - or they may be very selective in applying such physics
Simulation focus

- Games differ on where they focus their simulation effort
 - Some areas of the game will be simulated more closely than others

- Example
 - execution aspect of fighting games not much like real fighting
 - possible exceptions: "Fight Night“, “WiiSports”
 - Battlefield 1942 weapons modeled realistically
 - but ability and role of a given soldier not realistic
It is easy to criticize a game for not being realistic in some way

The question is

- where are the areas where the design sought realism?
- where is it omitted?
- what are the consequences for meaningful play?
Example

- Grand Theft Auto III
Scripting

- When there is a fixed stereotyped response to an action in the game, we say it is "scripted"
- As opposed to "simulated"
Example

- Designer decides what should happen when a grenade explodes
 - x amount of damage to all units within certain radius
 - x/2 damage within a larger radius
 - leaves a certain "stencil" on the floor or wall
- Simplifying the actual physics
Example

- Locked door in Zelda
 - If player tries to go through locked door with key in inventory, the door opens and key is used up

- Simplifications
 - Doors are logical, not physical barriers
 - Cannot be battered down, blown up, removed from hinges
 - Locks cannot be picked
 - In Elder Scrolls: Oblivion
 - Lock picking is a skill you can learn
 - (Some locks cannot be picked, though)
Advantages of scripting

- Much, much faster
 - to apply a simple rule than to run a physical simulation
- Easy to write, understand and modify
Disadvantages of scripting

- Limits player creativity
 - Players will try things that "should" work
 - based on extensive physical intuition
 - Will be disappointed if they don't
- Game will need many scripts
 - predicting their interactions can be difficult
 - complex debugging problem
Simulation

- Will still be a simplification
- Represent the quantities of interest
 - represent the forces that act on them
 - create physical laws for the game world
 - evolve the game state according to these laws
Example

- Half-Life 2
 - models weight of objects
 - models physical forces
 - can create puzzles involving moving objects of different weights
 - the "gravity gun" allows any movable object to become a weapon
Benefits of simulation

- More player options
 - Designer doesn't have to anticipate every way to do something

- Physical laws reusable
 - Do not have script every object
 - Can build (or buy) generic physics engine
 - Half-Life 2: Havok 2
Disadvantages of simulation

- **Speed**
 - extensive simulation may make the game too slow

- **Memory**
 - game state may become much larger

- **Testing**
 - difficult to test all possibilities
Design decision

- How much to simulate?
 - Where player creativity is important
 - Where realism is important
 - Where a simple enough model can be built

- What level of detail is required?
 - depends on the constraints of the game
 - always a computational cost
Example

- Fracture
Terrain effects on speed

- Some designers said yes
 - Others said no
 - Programmers wanted to avoid extra calculations
- Gameplay experiments
 - showed terrain weapons worse than useless without it
- Had to be exaggerated to achieve good gameplay
Example

- Action adventure scenario
- How do guards respond to player?
- Script
 - when player enters room, guards converge and attack
Simulation #1

- Proximity concept
- Model radius to guard
 - when player takes a step, sound is heard over certain radius
 - if guard is within radius and in room, guard will converge and attack
Simulation #2

- Stealth concept
- Model sound propagation to guard
 - when player takes a step, volume of sound is calculated based on level of stealth, floor material, etc.
 - sound is propagated through room and attenuated based on room contents
 - guards receive sound signal and if loud enough to reach attention, they will move in the apparent direction of sound
Simulation #3

- Unified level concept
- Model sound propagation through larger space
 - same as #2, but in 3 dimensions, through floors, etc.
Simulation #4

- Psychology of alertness
- Model guards' attention
 - same as #3, but guards have multiple alert states.
 - A single low-intensity noise will increase their alert state.
 - Over time, the alert state decays but not completely
Level of detail

- As we add more simulated detail
 - we add texture to the player's decisions
 - but we add complexity to the program
 - we may impact the play experience in unexpected ways

- We have to decide as designers
 - what is important for the game's impact
The role of simulation

"Immersive fallacy"
- the best game is one in which the player feels that they are totally immersed in a simulated world
- emphasizes only a certain aspect of the game experience

Realism is only one aspect of a game's experience
- it has to be weighed against other design criteria
Realism over all?

- Would "Wind Waker" be better if it had realistic (non-cell shaded) textures?
- Would Asteroids be better if the asteroids collided with each other?
- Would Gears of War be better if it took weeks to heal from injuries?
- Would Half-Life 2 be better if you couldn't carry an unrealistically large arsenal?
- Would GTA be better if there were child pedestrians and moms with strollers?
Wednesday

- Guest speaker
 - Patrick Curry, Midway Games
 - Stranglehold
Monday (10/15)

- Card game design draft due
- Next Wednesday (10/17)
 - Quiz #2: Play
- Monday week (10/22)
 - Card game presentations