Outline

- Reaction Papers
- Probability and Information Theory
- Cybernetics
 - Feedback loops
- Homework #2
Admin

- 1st Reaction paper due Monday
Reaction Papers

- Game syllabus
 - Grand Theft Auto 3, Grand Theft Auto: Vice City, Grand Theft Auto: San Andreas, or Bully
 - Half-Life or Half-Life 2
 - Katamari Damacy or We Love Katamari
 - Age of Mythology, Civilization IV, Lord of the Rings: Battle for Middle Earth (I or II), Total War(any) or WarCraft III
 - Guitar Hero, Guitar Hero II, or Dance Dance Revolution (any)
 - Gears of War, Dead Rising, Rainbow Six: Vegas, or Ghost Recon: Advanced Warfighter (XBOX 360)

- Play one game a week
 - submit a one-page reaction paper

- Due dates: 1/22, 2/5, 2/14, 2/21, 2/28, 3/7

- Object
 - exercise game analysis skills
 - use the analytic schemas from the book
Uncertainty

- Many games are probabilistic
 - roll the dice
 - shuffle the cards
- Some games are not
 - Chess
 - Checkers
 - Dots and Boxes
Certainty vs uncertainty

- **Certainty**
 - the condition when the outcome of an action is known completely in advance.

- **Some games operate this way**
 - Chess
 - Dots and Boxes

- **But even then**
 - uncertainty about who will win
 - otherwise what is the point?
Probability

- Probability is the study of chance outcomes
 - originated in the study of games

- Basic idea
 - a random variable
 - a quantity whose value is unknown until it is "sampled"
 - the random variable has a distribution
 - for each possible value
 - a probability that the value will occur
Single Die

- Random variable
 - # of spots on the side facing up
- Distribution
 - 1...6
 - each value 1/6 of the time
- Same event, different random variable
 - odd or even # of dots
Two dice

- Random variable
 - sum of the two die values

- Distribution
 - 2, 12 = 1/36
 - 3, 11 = 1/18
 - 4, 10, = 1/12
 - 5, 9 = 1/9
 - 6, 8 = 5/36
 - 7 = 1/6

- Non-uniform
 - not the same as picking a random # between 2-12
 - dice games use this fact
Role of Chance

- Chance can enter into the game in various ways
- Chance generation of resources
 - dealing cards for a game of Bridge
 - rolling dice for a turn in Backgammon
- Chance of success of an action
 - an attack on an RPG opponent may have a probability of succeeding
- Chance degree of success
 - the attack may do a variable degree of damage
Role of Chance 2

- Chance changes the players' choices
 - player must consider what is likely to happen
 - rather than knowing what will happen
- Chance allows the designer more latitude
 - the game can be made harder or easier by adjusting probabilities
- Chance preserves outcome uncertainty
 - with reduced strategic input
 - example: Thunderstorm
Psychology

- People are lousy probabilistic reasoners
- We overvalue low probability events of high risk or reward
 - Example: Otherwise rational people buy lottery tickets
- We assume success is more likely after repeated failure
 - Example: "Gotta keep betting. I'm due."
- Impacts for game design
Information Theory

- There is a relationship between uncertainty and information
 - Information can reduce our uncertainty
- Example
 - The cards dealt to a player in "Gin Rummy" are private knowledge
 - But as players pick up certain discarded cards from the pile
 - It becomes possible to infer what they are holding
Classical Information Theory
- Shannon

Information as a quantity
- how information can a given communication channel convey?
 - compare radio vs telegraph, for example
- must abstract away from the meaning of the information
 - only the signifier is communicated
 - the signified is up to the receiver

Information is measured in bits
- how many choices the receiver must choose from in interpreting the message
Noise

- Noise interrupts a communication channel
 - by changing bits in the original message
 - increases the probability that the wrong message will be received

Redundancy
- standard solution for noise
 - more bits than required, or
 - multi-channel
Example

- Legend of Zelda: Minish Cap
- Monsters are not all vulnerable to the same types of weapons
 - 10 different weapons
 - (we'll ignore combinations of weapons)
- Encounter a new monster
 - which weapon to use?
 - 4 bits of unknown information
- We could try every weapon
 - but we could get killed
Example, cont'd

- Messages
 - the monster iconography contains messages
 - rocks and metal won't be damaged by the sword
 - flying things are vulnerable to the "Gust Jar"
 - etc.
 - the game design varies the pictorial representations of monsters
 - knowing that these messages are being conveyed
 - learning to interpret these messages
 - is part of the task of the player
 - once mastered, these conventions make the player more capable

- Often sound and appearance combine
 - a redundant channel for the information
Information Flow

- People exchange information with a game system
 - to figure out options and outcomes
- But a game system can use information flow internally as well
 - Norbert Weiner developed *cybernetics* to explain this type of system
- Cybernetics is an attempt to unify the study of engineered and natural systems
Cybernetics is about control
- How is the behavior of a system controlled?

Control implies that there are parameters that should be maintained
- Example: temperature
 - human body
 - car engine

Control implies information
- Temperature messages
 - "too high"
 - "too low"
 - "OK"
Feedback Loops

- **Basic loop**
 - A cybernetic system needs a sensor that detects its state
 - The information detected by the sensor is then compared against the desired value
 - If the value is not correct, the system adjusts its state
 - the sensor detects this new state, etc.

- The system maintains stability by
 - feeding the information about its state back to the process producing the state
Two Types of Feedback Loops

- Negative Feedback Loop
 - "inhibition"
 - As the state changes, the loop acts to move it in the direction of its previous state
 - Example
 - thermostat
 - pendulum

- Positive Feedback Loop
 - "excitation"
 - As the state changes, the loop acts to move it in the direction that it is moving
 - Example
 - automobile turbocharger
 - home team advantage
Feedback Loops in Games

- From book

Diagram:
- Game state
- Scoring function
- Game mechanical bias
- Controller
Example 1

- game state
 - distribution of dice among players
- scoring function
 - number of unsuccessful challenges / bluffs
- controller
 - for each failure, lose a die
- bias
 - less information about game state
 - more likely to bid unsuccessfully
Effects?
Example 2

- game state
 - state of a fighting game
- scoring function
 - player's health
- controller
 - near-KO
- bias
 - increase chance of critical (high damage) hit on opponent
Effects?
Example 3

- **game state**
 - state of the chessboard

- **scoring function**
 - the number of pieces taken

- **controller**
 - for each piece taken

- **bias**
 - add that piece to the taker's side in any position

- Japanese Shogi has a rule like this
Effects?
Examples

- Mario Kart
Multiple Loops

- Games may have multiple feedback loops in operation
- Examples
 - Racing game
 - A player who falls behind may be better power-ups
 - AI racers may adjust their ability to keep pace with player
 - RPG
 - Killing monsters gives experience points for gaining levels
 - As a player gains levels, they gain better weapons and greater abilities
 - More success at killing monsters, etc.
 - But
 - Game is designed so advanced areas have tougher monsters
 - Levels get farther and farther apart
In General

- **Negative feedback loops**
 - increases system stability
 - makes the game last longer
 - magnifies late successes

- **Positive feedback loops**
 - destabilizes the system
 - makes the game shorter
 - magnifies early success

- **Positive feedback is usually essential**
 - propels a player to victory
 - otherwise, game can go on forever
 - one reason that three-player games are difficult to design
The Other Sense

- We also use the word "feedback" to mean:
 - praise vs criticism
 - "I got some negative feedback on the proposal, so I'm revising it."

- This is not the same:
 - psychological sense of feedback
 - information about the quality of something
 - good or bad
 - cybernetic sense of feedback
 - a dynamic established by a system's structure that pushes its state in one direction or another
 - in response to information
Game Design Issues

- Important
 - We are talking about the system internally
 - not the game + user system
- Know what feedback is going on in your system
 - analyze how game mechanisms combine to produce feedback
- Feedback may be undesirable
 - negative feedback may make a successful player feel punished
 - positive feedback may magnify ability differences between players
Example game

- **Crazy Eights**
 - deal 8 cards
 - turn up top card of stock
 - Each player
 - must follow suit or rank
 - or draw from pile
 - First one out of cards wins

- **Special cards**
 - 8 changes suit
 - A changes direction
 - 2 = draw 2
Play
Homework #2

- Crazy Eights rules +
 - Players with 4 or fewer cards
 - can use a King to change suit
 - and lay down a card at the same time

- Feedback effect?
Homework #2 cont'd

- Homework
 - restabilize the game
 - leave these rules as is
 - change the game to be more fair
 - countervailing negative feedback
 - but game can't go on forever

- Two stages
 - Rule Set #1 -> Playtest #1
 - Rule Set #2 -> Playtest #2

- Due 10/1
Monday

- Conflict
- Reaction paper #1
- Read: Chapter 20