Rules

Robin Burke
GAM 224
Fall 2007
Outline

- Administrativa
- Rules
- Example
- Types of Rules
- Emergence
Admin

- Analysis project
 - Selected game due today
- Due Monday
 - Homework #1
Where are we?

- Monday was the beginning
 - Unit I: Rules
- Up to Chapter 14 in the book
 - important background
 - defining games
 - defining rules
- Now we will start to skip around a bit
Systems

- System
 - a group of interacting, interrelated elements forming a complex whole

- Components
 - Objects
 - Attributes
 - Relationships
 - Environment
Asteroids
Important

- No one feature of a game can be meaningful by itself
 - Example
 - only 4 bullets at a time

- When we analyze a game
 - we have to think about the whole system at work
Systems at Different Levels

- **Formal systems**
 - defined by symbols / objects
 - the rules for their manipulation

- **Experiential systems**
 - the players
 - their experience of the game

- **Cultural systems**
 - the game itself
 - its role in society
Properties of rules

- Limit player action
- Explicit and unambiguous
- Shared by all players
- Fixed
- Binding
- Repeatable
Rules

- Rules are central
 - a game is a **system** in which **players** engage in an **artificial conflict** defined by **rules** that results in a **quantifiable outcome**

- Notice
 - the more significant the game, the more focus is on the rules and their administration
 - significant = results with real-world consequences, lots of spectators, etc.
Why is this?

- Rules define the mechanisms of play and not play.
- Rules specify what the game is about and not about.
Example 1

- **Basketball**
 - "A player is entitled to any spot on the court he desires, provided he legally gets to that spot first and without contact with an opponent"
 - "A player shall not hold, push, charge into, or impede the progress of an opponent"

- **Message**
 - this game is about maneuvering around opponents not colliding with them
 - this is not a game about territory:
 - you can't physically stop your opponent from moving
Example 2

- Dots and Boxes
 - Each player can add one line per turn
 - A player enclosing a square marks it as his and can take another turn

- Message
 - This game is about territory
 - It is accumulative
 - territory won cannot be lost later
 - Players have time to deliberate
Example 3

- Asteroids
 - The ship can shoot and maneuver
 - but can only rotate in 15° increments
 - Only 4 bullets can be on the screen at a time

- Message
 - Player cannot shoot indiscriminately
 - Player must move as well as shoot
Thunderstorm

- four dice
- object
 - to be the last player whose house is not struck by lightning
- rules
 - player rolls all available dice
 - if no ones are rolled
 - player adds to "house" drawing
 - if house is already complete, it is struck by lightning and player is out
 - if at least one 1 is rolled
 - all of the dice with ones are removed from play
 - play passes the next player
 - if all dice are ones
 - all four dice are back in play
- house
 - seven elements
Eight and out

- deck of cards
 - 6, 5, 4, 3, 2, A
 - in four piles by suit
- object
 - to be the last player with the most points
- rules
 - each player draws one card from each pile
 - if an Ace is drawn
 - that deck is removed from play
 - all other decks are reshuffled
 - if all drawn cards are Aces,
 - all four decks are back in play
 - if no Aces are drawn
 - a player gets one point
 - if a player gets 8 points
 - he is out
Is this the same game?

- No
 - there's no drawing of houses
 - there's no rolling of dice

- Yes
 - there is the same internal logic
 - there is the same distribution of probabilities
To clarify

- Each dice
 - 6 random outcomes
 - 1/6 chance of a 1
- Each deck
 - 6 random outcomes
 - 1/6 chance of an A
- Scoring
 - seven strokes plus lightning
 - tallying 8 points
Rule types

- Operational rules
 - here is what the players do

- Constituative rules
 - the internal structure of the game

- Which is the game?
 - depends on the questions you want to ask
Operational Rules

- What players do in order to play
 - Choices
 - Moves
 - Resources

- Operationally
 - "Thunderstorm" different from "Eight and Out"
Constituative Rules

- Logical and mathematical structure of the game
 - Players may be ignorant and still play
- Logically
 - The two games are the same
 - Isomorphic
 - 1 to 1 mapping
 - A game played under one set of rules
 - could be described under the other rules
 - the outcomes would not change
 - the probabilities of those outcomes would not change
Consequences

- Operational rules
 - Affect the experience of play
 - how easy is it to tell if you're ahead?
 - what is the sense of drama?

- Constitutive rules
 - Affect the way the player will think about choices
 - what strategies are best?
 - what the differential values of particular options?
Implicit rules

- Rules that make the game playable
 - Player decorum
 - Turn length
- The more significant the game
 - the more implicit rules become operational
Penguin Shuffle
Computer games

- Perfect for creating large, complex sets of constitutive rules
 - logical and mathematical structure are there
 - players don't have to keep track

- Operational rules
 - limited by what the interface can provide
 - many more possibilities provided by real-world objects
Example

- Compare Paper & Pencil role-playing
 - D & D
- Computer RPG
 - Elder Scrolls: Oblivion
- D&D
 - Substantial burden on players to compute probabilities, remember effects of actions, etc.
 - Players do the constitutive work
 - But you have enormous freedom of action
 - The DM can come up with a response regardless of your choice of action
- Oblivion
 - You can play without knowing anything about the underlying probabilities
 - Can only do those actions that the game accepts
Quick ways to get a rewrite

- "Here are the operational and implicit rules of my game"
- “There are no rules”
- “The game is just like real life”
Simulation vs Rules

- Are the rules of NBA Live the same as the rules of NBA basketball?
 - The game wants you to think so
- All the details are right
 - time-outs
 - quarters
 - passing
 - shooting
 - etc.
Simulation vs Rules

- But of course they aren't
 - the players dribble automatically
 - you control different players at different times
 - you don't have to aim your passes or shots
 - players don't hear broadcast commentary while playing
 - sometimes you’re the coach, sometimes the player
- You have to get past the rules of the simulated game
 - to think about the actual rules of the video game
Real rules

Examples
- player stats and their impact on player interactions
- power-ups and “special” moves
- player AI
 - team and opponent
- playbook

Don’t let the game deceive you
- think about what the player’s choices are
- what computations turn those choices into outcomes
The rules of go can be explained in 10 minutes
 - but it takes years to master
 - games have great strategic intensity

How does intensely meaningful play arise from simple rules?
Emergence

- product of coupled, context-dependent interactions
- resulting system is non-linear
- behavior cannot be reduced to the sum of its parts
Coupling

- From systems theory
- Objects are coupled
 - if a change to one causes or requires a change in another
- Example
 - The position of one piece on the go board impacts the strategic importance of others
 - players should consider the whole network of relationships when making a move
Coupling 2

- In engineering
 - we try to avoid coupling between objects in systems
 - tight coupling makes a system hard to change and fix
 - makes its behavior hard to predict

- In game design
 - coupling can produce great gameplay
 - it makes the user's decisions more meaningful
 - a decision here affects the whole outcome
 - if you don't feel this way, what is the point?
Asteroids
Example

- Coupling between thrust, firing direction and orientation in Asteroids
 - Forces the player to manage attitude, position and aiming simultaneously

- Add in precise collision detection
 - Changes in orientation can affect asteroid collisions, too

- Choice of ship orientation becomes a meaningful one
Context-dependent Interactions

- An interaction is context-dependent
 - if its outcome is not solely determined by the properties of the interactors
 - but also the environment of interaction

- Examples
 - Asteroid vs ship
 - outcome is always the same
 - not context-dependent
 - An incomplete pass in football
 - stops the clock
 - may be important late in the game
Context-dependency

- Requires the player to understand the context before making choices.
- The context becomes a feature that can be manipulated as well as the player's choices.

Example

- stealth mechanic
 - turns ordinary movement into a context-dependent activity
- Asteroids
 - presence or absence of alien ship changes strategy for attacking asteroids
Emergence through Combination

- When pieces can be combined in a complex system
 - their behavior may have emergent properties
 - a type of context-dependency

- Example
 - Chess
 - two rooks
 - Advance Wars
 - recon / rockets
 - submarine / battleship
 - RPGs
 - healer / fighter in party
Non-linearity

- Technically, the property that a linear change in the input to the system produces a change in output that is not linear
 - A non-linear system is one in which the behavior "breaks" at certain points
 - Non-linear systems theory
 - also called complexity theory and chaos theory
- Examples
 - a window and a baseball
 - small velocities \rightarrow bouncing
 - large velocities \rightarrow shattering
 - larger velocities \rightarrow puncturing
 - almost any macro physical system
Non-linearity 2

- Most games are inherently non-linear
 - Two outcomes – win / lose
 - Often a single game decision (input) can make the difference between winning and losing (output)
- Otherwise
 - the game becomes predictable
 - once behind, one can never catch up
- Example
 - Asteroids
 - a tiny navigation or prediction error can mean loss of ship
Meaningful Play

- Emergence helps make the play meaningful
 - it means the choices matter
 - things are highly coupled
 - it can generate more choices
 - combining parts for complex wholes
 - it makes that the game seems more "real"
 - the real world is non-linear
 - it gives the player something to learn
Example: Metroid

- Player has an infinite supply of bombs
 - bombs explode after a short time interval
 - bombs do not fall with gravity
- In the "ball" state
 - the player can survive a bomb explosion and be tossed in the air
- Result
 - the player can drop a bomb, drop another in the air, which throws them higher, etc.
 - access to vertical space is limited only by player's mastery of this technique
- If it wasn't for this emergent characteristic
 - the designer would have to build in some kind of super jump, or
 - would have to make levels that use the vertical dimension less
Bad emergence

- Emergence may mean that an unanticipated strategy succeeds when it shouldn't.

- Example
 - Deus Ex
 - Mines can be attached to walls
 - In some levels
 - the player can build a ladder from mines
 - get to the next level without completing the current one
Designing Emergence

- By nature not totally predictable
- Game must have complexity
 - coupling
 - context-dependency
- Objects must have
 - multiple relevant dimensions
 - on which they vary
- Iterate
 - find (and eliminate) bad emergence
 - find (and enhance) good emergence
Systems

- Emergence is a system phenomenon
 - two coupled objects ≠ emergence
 - weapon and ammo
 - many coupled objects
 - weapon and ammo and mission and enemy and location and carrying capacity and weapon upgrades and cost and ...
 - now we start to see emergent complexity

- But too much complexity
 - can burden the player's decision making
 - good games introduce couplings one at a time to build up the player's abilities
 - good games build on player's real-world experience and expectations so there is less to learn
Summary

- Every game has rules
 - Not always obvious
- Don’t confuse constitutive and operational rules
 - Constitutive = internal logic structure
 - Operational = what you do to play
Monday

- Reading
 - Ch. 17
 - Information