A Case-Based Reasoning Approach

Robin Burke, University of California, Irvine*
Recommender, Inc.

1 Collaborative Recommendation

Examples GroupLens (Resnick, et al. 1994), Ringo/Firefly (Shardanand & Maes, 1995)
Technique Use ratings of products to correlate users. Use ratings of similar users to
predict ratings of unseen items.
Problems Cold start
 System needs a large body of users to predict well.
 Early rater
 New items can't be recommended until they are rated.
 Gray sheep
 Users with no close neighbors get poor recommendations.

2 Case-Based Recommendation

Examples WEBSELL (Stahl & Bergmann, 2000), Entree recommender (Burke, 1999)
Technique Use a similarity metric to order products based on user input.
Problem Not enough knowledge/data for total order.

3 Answer = Hybrid Recommendation

Examples Daily Learner (Billsus, 2000), Fab (Balabanovic, 1997), PTV (Cotter & Smyth, 2000)
Techniques Recommendation
 Collaborative, content-based, demographic, knowledge-based, case-based
 Combination
 Switch, mix, combine, meta-level, cascade
4 Semantic Ratings

Opportunity In Entree, critique-based navigation yields "semantic ratings": knowledge of the "why" behind a user's likes and dislikes.

Solution Inter-rating similarities provide a richer similarity metric for raters: a case-based alternative to standard collaborative filtering.

Entree Restaurant Recommender

http://infolab.ils.nwu.edu/entree/
5 Experiments

Methodology
Split session data into training and test groups
Select active users for testing
Divide each session into profile and test data
Simulate cascaded recommendation task
- Profile = items rated so far, Test = items in retrieved set
- Based on profile, predict ratings for test items
- Try to select the positively-rated item

Techniques
Case-based comparison of users using the semantic ratings (labeled "Heuristic")
Collaborative filtering using correlation of binary ratings (labeled "Correlation")
Vector space model treating restaurant / rating pairs treated as unique features (labeled "Sparse")
Average rating of each restaurant used as prediction

6 Results

Large sessions
15-rating sessions (n=4600)

Smaller sessions
10-rating sessions (50% sample, n=17,000)

Small sessions
5-rating sessions (20% sample, n=5669)

Data
The data on which this research is based is available in the UCI KDD archive at <URL http://kdd.ics.uci.edu/en>
Future work

Field
Field as part of e-commerce recommendation service

Profiles
Experiment with larger multi-session profiles

Learning
Acquisition of inter-rating similarity metric

As of January 2001, I will be joining the Department of Management Science/Information Systems at California State University, Fullerton